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1 Normal Temperature

I was given a data set with the body temperature, heart rate, and gender of
n = 130 subjects, which mimicked the results of a 1992 article from the Journal
of the American Medical Association. Using Excel’s Data Analysis toolkit, I
created a Summary Statistics Table that includes sample mean, variance, and
standard deviation. These values can be seen in Table 1.

Table 1: Summary Statistics of Heart Rate and Body Temperature Data

To see whether the distribution of temperature is approximately normal, I
used the χ2 test with H0 = N(98.25, 0.54). Observed and Expected values,
as well as the χ2 calculation can be seen in Table 2. These calculations were
done in Excel. The sum of the sample χ2 values was 6.458. Using Table IV of
Probability and Statistical Inference, χ2

0.05(9) = 16.92. Since 6.458 < 16.92, we
fail to reject the null hypothesis, H0 = N(98.25, 0.54). Thus, the distribution
of body temperatures is approximately normal.

A person’s temperature would be considered ”abnormal” if it lay outside of
the 95% confidence interval of the mean. Since the distribution is approximately
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normal and n is large, the 95% confidence interval can be derived using the
statistics from Table 1 as follows:

[x̄− zα/2
s√
n
, x̄+ zα/2

s√
n

]

[98.25− Φ(z0.05/2)
0.73√

130
, 98.25 + Φ(z0.5/2)

0.73√
130

]

[98.124, 98.375] .

It is not surprising that range of the 95% confidence interval is small; this is a
large sample size with a small variance.

Table 2: Grouped Body Temperature Data for χ2 Calculation

Since 98.6 Fahrenheit lies outside of the 95% confidence interval, it is not
likely the true population mean for body temperature. To support this claim, I
ran a 2-tailed test of the hypotheses H0 : µ = 98.6 and H1 : µ 6= 98.6. Since the
distribution for body temperature is approximately normal and n is sufficiently
large, the critical region can be found using:

|x̄− µ0| ≥ zα/2
s√
n

Using a significance value of α = 0.05, Φ(zα/2) = 1.960 according to Table Va
of Probability and Statistical Inference. Using values from Table 1, I plugged in
sample standard deviation, s; sample mean, x̄; null hypothesis mean, µ0; and
number of samples, n. These values can be seen in Table 1.

|98.25− 98.6| ≥ 1.960
0.73√

130

0.35 ≥ 0.1254894614

Therefore, we reject the null hypothesis, H0 : µ = 98.6 degrees Fahrenheit.
Looking at how body temperature differs with sex is interesting. A Box

and Whisker plot of the male and female body temperature data can be seen
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in Figure 1. The median and range of the female data is larger than that of
the male data. As seen in Table 4, the mean of both male and female body
temperatures lay outside of the 95% confidence interval for body temperature,
suggesting an underlying sex difference in the measurements.

Figure 1: Plot of Male and Female Body Temperatures in Fahrenheit

Though variance could be assumed equal since n > 30, I used the Two-
Sample F-Test for Variance in Excel with the hypotheses H0 : σ2 = σ2

0 , H1 :
σ2 6= σ2

0 and a significance level of α = 0.05. The null hypothesis for the test
was that the variances are equal. The results can be viewed in Table 3. Since
F < FCrit and the P-value is sufficiently large, I fail to reject the null hypothesis

Table 3: Two-Sample F-Test for Variance

I then compared the means of male and female body temperature samples in
Excel using the Two-Sample t-Test Assuming Equal Variances. Since the null
hypothesis is that the means are equal, I used the two-tail values to determine
whether or not I should reject the null hypothesis. The results of the test can
be seen in Table 4. Since the two-tail p-value is less than the significance level
α = 0.05, I reject the null hypothesis. There is not sufficient evidence to support
the claim that male and female patients have equal body temperatures.
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Table 4: Two-Sample t-Test Assuming Equal Variances

Lastly, I wanted to look for a relationship between body temperature and
heart rate. A scatter plot of this data can be seen in Figure 2. To determine
whether there is any statistically significant correlation in the data, I tested the
hypothesis H0 : ρ = 0 against H : ρ 6= 0 using a two-tailed test with a signif-
icance level α = 0.05. Using Excel, I determined that the sample correlation
coefficient is r = 0.2536. With over 100 degrees of freedom, r0.025 = 0.1946.
This value was obtained from Table IX of Probability and Statistical Inference.
Since 0.2536 > 0.1946, I reject H0. This means that the there is no significant
relationship between a person’s body temperature and heart rate.

Figure 2: Scatter Plot of Heart Rate and Body Temperature Data
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2 Mortality

The mortality rates of Americans are kept by the Social Security Administra-
tion. This data is split by sex and contains the conditional probability that
an individual will die at age X. There is also a ”Number Lives” column for
each gender showing how many people are alive at age X out of a hypothetical
100,000 person sample.

To construct a discrete probability distribution of this data, I used the ”Num-
ber Lives” column. To get the probability that a person of age X lived another
year, I subtracted the ”Number Lives” value at age (X+1) from ”Number Lives”
value at age X and divided that value by 100,000. I checked the probability
distribution for each sex by also creating a cumulative probability distribution
column in Excel; as expected, this column’s value reached 1 and leveled off. A
line graph comparing the probability distributions of the mortality rate for men
and women is shown in Figure 3.

There are several interesting characteristics evident in the graph of the dis-
tributions. Firstly, there is a sharp drop in mortality rates in the first few years
after birth. Death rates for infants are high due to birth defects and a poor
immune system. In the US, if a person lives past infancy, their probability of
dying during childhood is quite low. The distributions are left skewed because
people are more likely to die when they are older.

Figure 3: Probability of Death by Age for Males and Females

The is also a rise in the probability of death for males when they reach their
twenties. At this time, men often engage in riskier behaviour. By age 20, there
is a noticeable difference between the distributions of males and females. The
maximum death probability is reached for men before women. This could be
partially due to male’s increased risk of heart disease. Though the maximum
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death rate for females occur later, the mode is larger. These statistics will now
be examined in closer detail.

For men, the highest probability of death is 3.415% at 86 years of age;
68.642% of men die before the mode age. For women, the highest probability of
death is 3.881% at 89 years of age; 66.469% of women die before the mode age.

Using the CDF and ”Number Lives” column, I found the 5-number summary
for both males and females. For both men an women, Q0 = 0. For females,
Q1 = 75, Q2 = 84, Q3 = 91, Q4 = 113. For males, Q1 = 69, Q2 = 80, Q3 =
87, Q4 = 112. A box and whisker plot of this data can be seen in Figure 4.
Approximately 48.087% of women are dead before they turn 84 and 49.2% of
men are dead by 80.

Figure 4: Probability of Death for Males and Females by Year

The mean age of death for males and females was calculated using a the sum
of weighted averages, x̄ =

∑119
x=0 x ∗ p(x). These values where then floored. The

sample mean for males was 75 and 36.314% of men die before this age. The
sample mean for females is 80. 35.941% of females die before the average age of
death.

The standard deviation for each sex was found using

sx =

√√√√(

119∑
x=0

x2 ∗ p(x))− µ2

For women, the variance is s2 = 235.514 and the standard deviation is
s = 15.345466. For men, the variance is s2 = 283.0983 and the standard
deviation is s = 16.8255.

Using this information, I found the equivalent of the Empirical Rule for these
distributions. For each number of standard deviations from the mean, j, I used
Excel to find the cumulative probability of the range

[
x̄ − bsc ∗ j, x̄ + bsc ∗ j

]
.
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The resulting values can be seen in Table 5. For men, 59.058% die within one
standard deviation of the mean, 95.194% die withing two standard deviations
of the mean, and 97.937% die within three standard deviations of the mean.
For women, 78.294% die within one standard deviation of the mean, 95.786%
die withing two standard deviations of the mean, and 98.266% die within three
standard deviations of the mean.

Table 5: Empirical Rule with Mortality Distributions

Observing the different maximums in Figure 3 lead me to question whether
there was a significant difference between the mean lifespans of males and fe-
males. I conducted a test with H0 : µmales = µfemales, H1 : µmales 6= µfemales
with significance level α = 0.050. The critical region can be calculated using
the following equation:

|x̄− ȳ| ≥ tα/2(n+m− 2)sp

√
1

n
+

1

m

where

Sp =

√
(n− 1)S2

x + (m− 1)S2
Y

n+m− 2
.

I inserted the mortality statistics such that x = male age, y = female age, and
tα/2 = z0.025 = 1.960, such that

Sp =

√
(100000− 1)283.0983226236 + (100000− 1)235.51402368

100000 + 100000− 2

= 16.10298 .

Thus the critical region is

|75.83− 80.614| ≥ 1.960 ∗ (100000 + 100000− 2) ∗ 16.10298 ∗
√

1

100000
+

1

100000

4.784 6≥ 28229.7793
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Since 4.784 < 28229.7793, the null hypothesis is clearly rejected. This is
unsurprising given the large sample size of this data set, which would cause any
difference to be significant.

The primary analyzers of mortality tables are life insurance companies. I de-
cided to try my hand as an actuary to determine premiums for 20-year, $100,000
policies such that the company breaks even on the policy. To do this, I created a
wrote a Python program which optimizes the premium such that the company’s
profits would average between 0 and 19 cents per customer. While the net pol-
icy profit is not in this range, one cent is added or removed from the premium.
This premium is then tested in a function that calculates the average payout
and revenue collected each year using the cumulative probability of death during
the policy to find the net profit. This code can be viewed in the Appendix or at
https://github.com/SandersKM/AnnualPremiums. The GitHub also contains
the probability values for both sexes in a CSV.

I first decided to find my own annual premium. As a 20 year old woman,
my likelihood of dying in the next 20 years is rather low. My annual premium
should be $70.93. At this rate, the insurance company would make an average
of $0.05 per customer.

I then found the annual premium for Dr. Camfield, a 38 year old man. He
should pay $430.81 per year. This rate gives the insurer a profit of $0.09 per
policy holder.

Lastly, I found the annual premium for Dr. Campbell, a 58 year old man.
Due to the risk associated with his policy, his annual premiums are fairly high.
He should pay $1,791.24 per year. At this rate, the insurance company would
profit $0.10 per customer.
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Appendix

import random

import locale

def main():

#csv with mortality rates for ages 0-119. No labels.

#format: "Male prob, Female prob \n"

file = "mortalityrates.csv"

prob_file = open(file, "r")

prob = prob_file.readlines()

locale.setlocale(locale.LC_ALL, ’’)

print("Welcome to the annual premium calculator!")

print("Determine the annual premium each policy holder should pay

for your insurance company to break even.")

finished = False

while not finished:

policy, cumdead = get_data(prob)

premium, net = optimize(policy, cumdead)

print("The annual premium for this policy holder should be " +

locale.currency(premium, grouping=True)+ ".")

print("At this rate, the profit per policy holder would be

around "+

locale.currency(net, grouping=True)+ ".")

done = input("Would you like to look at another policy? ")

if done[0].lower() == "n":

print("Thank you for using the annual premium calculator!")

finished = True

def get_data(prob):

#Male = 0, Female = 1

sex = None

while sex == None:

sex_input = input("Enter the sex (M/F) of the policy holder: ")

if sex_input[0].lower() == "m":

sex = 0

elif sex_input[0].lower() == "f":

sex = 1

age = "NO"

while (not age.isdigit()):

age = input("Enter the integer age of the policy holder: ")

age = int(age)

policy = []

cum_dead = [0]

i = 0

dead = 0

while i < 20:

policy.append(float(prob[age + i].split(",")[sex]))
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dead += float(prob[age + i].split(",")[sex])

cum_dead.append(dead)

i += 1

return (policy, cum_dead)

def optimize(policy, cum_dead):

premium = (sum(policy) * 100000)/20

finished = False

i = 0

while not finished:

net = test_premium(premium, policy, cum_dead)

if net < .19 and net > 0:

finished = True

elif net < 0:

premium += .01

else:

premium -= .01

return (premium, net)

def test_premium(premium, policy, cum_dead):

net = 0

for i in range(len(policy)):

net += (premium * (1-cum_dead[i]))

net -= cum_dead[-1] * 100000

return net

main()
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